Капнография

Содержание

Капнография – использование в интенсивной терапии

Капнография

Капнография — атравматичное измерение парциального давления CO2 в выдыхаемой воздушной смеси. Форма волны CO2 или капнограмма представляет собой изменение в концентрации CO2 во время одного дыхательного цикла.

Выделение CO2 дыхательной системой может быть показано как функция времени (отношение концентрации CO2 ко времени), или содержание в выдыхаемом дыхательном объеме (отношение концентрации CO2 к объему).

Отношение концентрации CO2 ко времени графически представлено формой волны CO2 или капнограммой. Изменения в форме капнограммы являются диагностическими критериями течения заболевания, так как изменение EtCO2 (максимальная концентрация CO2 в конце каждого дыхательного цикла), может использоваться, чтобы оценить тяжесть заболевания и реакцию на проводимое лечение.

В статье обсуждается использование временной капнографии, потому что это — единственный вид контроля CO2 используемый в системе скорой медицинской помощи (emergency medical service) и имеющий преимущество над объемной капнографией, которую сложно применять у неинтубированных пациентов.

Оксигенация и вентиляция – различные физиологический функции, которые должны быть оценены как у интубированных, так и спонтанно дышащих пациентов.

Пульсоксиметрия обеспечивает в реальном времени обратную связь об оксигенации, тогда как капнография предоставляет информацию о вентиляции (как эффективно CO2 устраняется легочной системой), перфузии (как эффективно CO2 транспортируется через сосудистую систему), и метаболизме (продукция CO2 клеточным метаболизмом).

Технология измерения

Капнография стала обычной частью анестезиологии в Европе в 1970-ых и в Соединенных Штатах в 1980-ых.

Капнография была включена в рекомендации American Heart Association (AHA) в 2000 и рекомендации American College of Emergency Physicians (ACEP) в 2001 и стала одним из стандартов в экстренной медицине, на скорой медицинской помощи, для проверки размещения эндотрахеальных трубок в операционной.

Большинство технологий капнографии основано на использовании инфракрасного (IR) излучения. Молекулы CO2 поглощают инфракрасное излучение в ограниченном спектре — длина волны 4.26 μm, количество поглощенного излучения в газовом образце сравнивается с показательным значением.

Мониторы CO2 измеряют газовую концентрацию или парциальное давление используя одну из двух конфигураций, в зависимости от местоположения датчика: анализируют основной поток (Mainstream) или боковой поток (Sidestream).

Анализаторы основного потока измеряют CO2 непосредственно от дыхательных путей, с датчиком, расположенным на интубационной трубке. Аппараты бокового потока используют для анализа аспирационный маленький образец от выдохнутого дыхания, подающийся через трубку на датчик, расположенный в мониторе.

В системах основного потока датчик расположен на эндотрахеальной трубке, поэтому их используют только для интубированных пациентов. Системы бокового потока имеют датчик, расположенный в мониторе, поэтому используются для интубированных и для неинтубированных пациентов.

У интубированных пациентов адаптер капнометра расположен на канюле интубационной трубки. У спонтанно дышащих пациентов забор проб для анализа осуществляется через носовую канюлю.

Системы бокового потока могут быть высоким потоком или низким потоком. Низкая скорость потока обеспечивает более высокую точность у больных с низкими дыхательными объемами (новорождённые, младенцы, пациенты с гиповентиляцией).

Мониторы CO2 могут быть или количественными, или качественными. Количественные устройства измеряют точный EtCO2 – количество (капнометрия) или количество и форма волны (капнография).

Качественные устройства измеряют диапазон, в который попадает EtCO2 (например, 0-10 мм рт.ст., > 35 мм рт.ст.) в противоположность точной оценке (например, 38 мм рт.ст.).

Обычно используемое качественное устройство — колориметрический датчик EtCO2, представляющий собой особенно обработанную лакмусовую бумажку, которая меняет цвет, когда подвергается воздействию CO2. Его используют для проверки положения интубационной трубки.

Если трубка находится в трахее, выдох CO2 изменит цвет лакмусовой бумажки; если труба находится в пищеводе, не будет никакого цветового изменения.

Физиология

Капнограмма, соответствующая одному периоду дыхания, состоит из четырех фаз (фаза подъема, альвеолярное плато, фаза вдоха, вентиляция мертвого пространства).

  • Фаза 1 (вентиляция мертвого пространства, A-B) представляет собой начало выдоха, в котором очищается мертвое пространство верхних дыхательных путей.
  • Фаза 2 (фаза подъема, B-C), представляет быстрое повышение концентрации CO2 в потоке дыхания, так как CO2 от альвеол достигает верхних дыхательных путей.
  • Фаза 3 (альвеолярное плато, C-D) представляет пологое плато, концентрация CO2 достигает однородного уровня во всем потоке дыхания и заканчивается пиком максимальной концентрации CO2 (EtCO2). Это количество, которое появляется на дисплее монитора.
  • Фаза 4 (D-E) представляет период вдоха, в котором концентрация CO2 падает до ноля, так как атмосферный воздух поступает в дыхательные пути.

Характеризуется нормальная капнограмма, для пациентов всех возрастов, определенным набором элементов: включает четыре различные фазы, концентрация CO2 начинается в ноле и возвращается к нолю (вдыхаемый воздух не содержит CO2), максимальная концентрация CO2 достигается с каждым дыханием (то есть, EtCO2), амплитуда зависит от концентрации EtCO2, ширина зависит от экспираторного времени, и есть особенная форма для всех пациентов с нормальной функцией легкого.

Пациенты с нормальной функцией легкого, независимо от возраста, будут иметь определенную капнограмму прямоугольной или трапециевидной формы и узкий градиент EtCO2 — PaCO2 (0-5 мм рт.ст.), с EtCO2, точно отражающим PaCO2.

У пациентов с обструктивной патологией легких на капнограмме будет более сглаженная фаза подъема и восходящий наклон в альвеолярном плато.

У больных с нарушением функции легких, градиент расширится, в зависимости от серьезности поражения легкого, и значения EtCO2 будут полезны только для мониторинга дыхательной функции в течение длительного времени, а не как выборочная проверка, которая может не коррелировать с PaCO2.

Показания для интубированных пациентов

  • Проверка положения интубационной трубки
  • Непрерывный контроль местоположения трубки во время транспортировки
  • Определение эффективности реанимационных мероприятий и прогноз при остановке сердца
  • Мониторинг уровня EtCO2 у пациентов с угрозой повышения внутричерепного давления
  • Определение прогноза в травматологии
  • Определение адекватности вентиляции

Проверка положения интубационной трубки

После интубации, наличие волны со всеми четырьмя фазами указывает, что конец интубационной трубки проходит через ые связки.

Плоская форма кривой указывает желудочное размещение трубки, кроме определенных случаев (обструкция эндотрахеальной трубки, полная обструкция дыхательных путей дистальнее трубки, трахеальное размещение с неадекватным легочным кровотоком или от слабых сжатий груди, или при длительной остановке сердца без циркуляции CO2 из-за прекращения клеточного метаболизма).

Контроль положения трубки во время транспортировки

Любая начальная дистопия интубационной трубки или последующее ее смещение во время транспортировки, имеет катастрофические последствия. Непрерывный контроль положения трубки во время транспортировки (догоспитальной, межбольничной, или внутрибольничный) является необходимым для безопасности пациента.

Параметр эффективности сердечно-легочной реанимации

В 1980-ых, исследования на лабораторных животных продемонстрировали, что уровень EtCO2 отражает функциональное состояние сердца во время реанимационных мероприятий и может использоваться как атравматичный метод оценки. Значительное исследование в 1988 продемонстрировало это принцип у людей.

Во время остановки сердца, когда альвеолярная вентиляция и метаболизм являются постоянными, EtCO2 отражает степень легочного кровотока. Поэтому, EtCO2 может использоваться как мера эффективности массажа сердца. Поскольку эффективное кардиальное сжатие приводит к более высокому функциональному ответу сердца, EtCO2 будет соответственно повышаться от начального, отражая увеличение перфузии.

Параметр EtCO2 изменяется непосредственно с функциональным состоянием сердца, произведенным прекордиальным сжатием и, рекомендован для измерения в условиях как скорой помощи, так и отделениях интенсивной терапии.

В исследованиях определены уровни EtCO2 ниже чем 3 мм рт.ст. в начале остановки сердца, и более высокие уровни, появляющиеся во время массажных толчков и в среднем, достигают более 7,5 мм рт.ст.

как раз перед восстановлением собственного кровообращения. Этот пик в уровне EtCO2 — самый ранний признак восстановления кровообращения, и появляется раньше гемодинамических признаков (пульса или АД).

Капнографический контроль фактически устраняет необходимость прерывания массажа с целью проверки пульса. Восстановление перфузионного ритма немедленно будет сопровождаться значительным увеличением EtCO2, при этом массаж сердца может быть безопасно остановлен и проведена оценка ЭКГ-ритма и артериального давления.

EtCO2 может использоваться как прогностический индикатор выживания при реанимации взрослых пациентов с остановкой сердца. В многократных исследованиях, уровень EtCO2 10 мм рт.ст.

или ниже измеренный спустя 20 минут после начала реанимационных мероприятий точно предсказывает смерть пациентов с остановкой сердца.

Прогностическое значение измерения EtCO2 было подтверждено в клинических исследованиях.

.

Мониторинг уровня EtCO2 у пациентов с угрозой повышения ВЧД

Контроль EtCO2 играет существенную роль в предотвращении гипервентиляции у больных с черепно-мозговой травмой и угрозой повышения внутричерепного давления. Уровень CO2 оказывает влияние на мозговой кровоток: высокие уровни CO2 приводят к мозговой вазодилятации, а низкие уровни CO2 приводят к мозговой вазоконстрикции.

Длительная гиповентиляция (EtCO2 ≥ 50 мм рт.ст.), вредна для пациентов с повышенным ВЧД, потому что приводит к увеличению мозгового кровотока и дальнейшему нарастанию внутричерепного давления. Длительная гипервентиляция также вредна и приводит к худшим неврологическим результатам у пациентов с ЧМТ.

Следовательно, вентиляция с капнометрическим контролем, чтобы достигнуть нормовентиляции рекомендуется. Догоспитальное использование контроля EtCO2 уменьшает уровень гипервентиляции.

Показания для капнографии у неинтубированных пациентов

  • Быстрое обследование пациентов в критическом состоянии.
  • Обследование и сортировка пострадавших от химического терроризма.
  • Определение степени и реакции на лечение острой дыхательной недостаточности.
  • Определение адекватности вентиляции у больных с измененным психическим статусом.
  • Обнаружение метаболического ацидоза у диабетических пациентов и у детей с гастроэнтеритом.

James R.

Roberts, перевод с англ.

Источник: http://www.ambu03.ru/kapnografiya-ispolzovanie-v-intensivnoj-terapii/

Капнография

Капнография

Капнография, неинвазивный метод измерения и графической регистрации уровня СO2 во время дыхательного цикла, хорошо изучена, и много лет применяется для контроля за вентиляцией в анестезиологии и интенсивной терапии. Ниже будут описаны лишь наиболее актуальные аспекты применения этого метода при проведении мониторинга в интенсивной терапии.

При спокойном дыхании уровень PetСO2 у здоровых людей равен 36-45 мм рт. ст. Или, если выразить концентрацию углекислого газа в процентах (1% = 7,6 мм рт. ст.) при давлении 760 мм рт. ст., FetСO2 равен 4,7-5,9%. У женщин в третьем триместре беременности нормальная PetСO2 составляет 32-36 мм рт. ст.

Фаза I обусловлена наличием аппаратного и анатомического мертвого пространства. Видно, что уровень СO2 в начале выдоха не определяется.

В фазе II начинает поступать альвеолярный газ, и уровень СO2 в выдыхаемом воздухе резко повышается.

В фазе III, которая получила название «фаза плато» происходит медленное повышения уровня CO2 за счет поступления прогрессивно уменьшающегося объема газа из неперфузируемых альвеол, в которых низкий уровень СO2.

В самом конце выдоха уровень СO2 максимален, это и есть PetСO2. Затем начинается новый вдох, и уровень CO2 снижается до нуля.

Капнография: контроль за вентиляцией

Капнография традиционно применяется для контроля за вентиляцией во время проведения ИВЛ. Реже – при сохраненном спонтанном дыхании пациента.

Повышение PetСO2

Повышение PetСO2 > 45 мм рт. ст. указывает на гиповентиляцию, которая выявляется капнографом не сразу, а лишь через несколько минут, которые требуются для заметного подъема концентрации СO2 в тканях, крови и альвеолах. Возможные причины: угнетение дыхательного центра, слабость дыхательной мускулатуры, бронхоспазм, неадекватная искусственная вентиляция легких.

Быстрое снижение PetСO2 до нуля

Быстрое снижение PetСO2 до нуля может быть обусловлено несколькими причинами:

  • Остановкой дыхания;
  • Обтурацией, смещением эндотрахеальной или трахеостомической трубки;
  • Остановкой кровообращения;
  • Нарушением забора газов (смещение, обтурация канюли, попадание воды);
  • Неисправность аппарата ИВЛ;
  • Неисправностью капнографа.

Быстрое снижение PetСO2, но не до нулевых значений

Наиболее часто встречающиеся причины быстрого снижения PetСO2 < 36 мм рт. ст. (см. Рис.4), но не до нулевых значений – капнографическая кривая сохраняется:

Обструктивные нарушения

Увеличение сопротивления во время выдоха сопровождается уменьшением скорости выделения CO2, и, часто, увеличением PetСO2. На капнограмме «фаза плато» становится наклонной.

Наиболее частые причины:

  • Бронхоспазм;
  • Частичная обструкция бронхов;
  • Перегиб или частичная обструкция эндотрахельной или трахеостомической трубки.

При нормальной функции легких существует небольшой градиент 3-5 мм рт. ст. между уровнем СO2 в артерии (PaCO2) и уровнем углекислого в конце выдоха (PetСO2).

Но при любом увеличении объема мертвого пространства (анатомического, аппаратного, альвеолярного), или в случае нарушения диффузии CO2 через альвеолокапиллярную мембрану (например, тяжелый ОРДС), этот градиент возрастает, причем, мало предсказуемым образом.

Практически любое поражение легких, будь то пневмония, эмфизема, астма, ХОБЛ или нарушение гемодинамики со снижением перфузии легких (например, кровотечение, сердечная недостаточность, любой вид шока и т.д.) приводят к росту мертвого пространства и снижению PetСO2.
В таких случаях только прямое определение газового состава артериальной крови позволяет достоверно судить об оптимальности ИВЛ. Обратный градиент, когда значение PetСO2 >PaCO2, возникает редко. Причины – высокая альвеолярная вентиляция, большие объемы кислорода и др.). Этот феномен значимого клинического значения он не имеет.

Внимание. У больных с легочной патологией и (или) нарушениями гемодинамики нельзя проводить коррекцию вентиляции, ориентируясь только на капнограмму.

Но если есть признаки гиповентиляции (PetСO2 > 45 мм рт. ст.), то, в большинстве случаев, больной нуждается в увеличении объема вентиляции. За исключением пациентов с хронически повышенным уровнем CO2 – ХОБЛ, сердечная недостаточность.

Или в случае применения специальных методик вентиляции (пермиссивная гиперкапния).

При проведении длительной ИВЛ, данные, полученные при проведении капнографии, должны регулярно сопоставляться с результатами газового контроля артериальной крови.

Вот только до сих пор в стране имеется не столь много больниц, где существует возможность проведения круглосуточного мониторинга газов крови.

В то же время существует категория больных, у которых метод контроля PaCO2 по уровню PetСO2 при проведении ИВЛ обеспечивает приемлемую для клинических целей достоверность результатов.

В первую очередь это больные с поражением центральной нервной системы (ТЧМТ, инсульты, другие нейрохирургические вмешательства) и (или) пациентов других профилей без грубых легочных и гемодинамических нарушений. У большинства пациентов ИВЛ проводится в режиме нормовентиляции – ориентируются на PetСO2 = 34-40 мм рт. ст.

Подтвеждение правильной интубации

На сегодняшний день рекомендации категоричны: капнография должна быть использована в качестве основного подтверждающего метода, что произведена интубация трахеи, а не пищевода.

При попадании эндотрахельной трубки в пищевод может наблюдаться кратковременный подъем концентрации CO2 за счет находящегося в ротоглотке газа.

Но затем за несколько дыхательных циклов концентрации СO2 снижается до нуля.

Контроль правильности выполнения сердечно-легочной реанимации

Много лет назад было показано, что если во время проведения сердечно-легочной реанимации (СЛР) PetСO2 оставался ниже 7-10 мм рт. ст.

, в подавляющем большинстве случаев полноценного восстановления функций ЦНС в постреанимационном периоде у пострадавшего не происходило.

В настоящее время капнография рекомендована как важный компонент контроля правильности проводимых мероприятий на разных этапах СЛР.

Предложены критерии:

1. Массаж сердца эффективен, если PetСO2 > 10 мм рт. ст.

Внутривенное введение гидрокарбоната натрия вызывает увеличение PetСO2, которое не имеет отношения к эффективности массажа сердца.

2. Если появлению синусового сердечного ритма на ЭКГ не сопутствует быстрый подъем PetСO2 > 15 мм рт. ст., необходимо продолжать массаж сердца и медикаментозную терапию до восстановления эффективных сердечных сокращений-Подъем PetСO2 в ходе СЛР выше 15 мм рт. ст. является признаком возобновления самостоятельного кровотока;

3. Резкое устойчивое повышение значений PetCO2 (обычно ≥40 мм рт. ст.) подтверждает восстановление спонтанного кровообращения;

4. Внезапное, в течение 5-10 дыхательных циклов, падение PetСO2 почти до нуля – характерный признак остановки кровообращения.

Возможные причины низкого PetСO2 во время СЛР

  • Погрешности в методике в правильности выполнения массажа сердца;
  • Гипервентиляция;
  • Интубация пищевода;
  • Смещение эндотрахеальной трубки;
  • Массивная ТЭЛА;
  • Тяжелая гиповолемия;
  • Напряженный пневмоторакс;
  • Тампонада сердца.

Источник: https://www.eurolab.ua/encyclopedia/urgent.medica.aid/48884/

Капнография

Капнография

  1. Капнография: контроль за вентиляцией
  2. Повышение PetСO2
  3. Быстрое снижение PetСO2 до нуля
  4. Быстрое снижение PetСO2, но не до нулевых значений
  5. Обструктивные нарушения
  6. Наиболее частые причины:
  7. Капнография: выбор параметров ИВЛ
  8. Внимание.

    У больных с легочной патологией и (или) нарушениями гемодинамики нельзя проводить коррекцию вентиляции, ориентируясь только на капнограмму.

    Но если есть признаки гиповентиляции (PetСO2 > 45 мм рт. ст.), то, в большинстве случаев, больной нуждается в увеличении объема вентиляции.

    За исключением пациентов с хронически повышенным уровнем CO2 – ХОБЛ, сердечная недостаточность. Или в случае применения специальных методик вентиляции (пермиссивная гиперкапния).

    При проведении длительной ИВЛ, данные, полученные при проведении капнографии, должны регулярно сопоставляться с результатами газового контроля артериальной крови.

    Вот только до сих пор в стране имеется не столь много больниц, где существует возможность проведения круглосуточного мониторинга газов крови.

    В то же время существует категория больных, у которых метод контроля PaCO2 по уровню PetСO2 при проведении ИВЛ обеспечивает приемлемую для клинических целей достоверность результатов.

    В первую очередь это больные с поражением центральной нервной системы (ТЧМТ, инсульты, другие нейрохирургические вмешательства) и (или) пациентов других профилей без грубых легочных и гемодинамических нарушений. У большинства пациентов ИВЛ проводится в режиме нормовентиляции – ориентируются на PetСO2 = 34-40 мм рт. ст.

    Подтвеждение правильной интубации

  9. Контроль правильности выполнения сердечно-легочной реанимации
  10. Предложены критерии:
  11. Возможные причины низкого PetСO2 во время СЛР

Капнография, неинвазивный метод измерения и графической регистрации уровня СO2 во время дыхательного цикла, хорошо изучена, и много лет применяется для контроля за вентиляцией в анестезиологии и интенсивной терапии. Ниже будут описаны лишь наиболее актуальные аспекты применения этого метода при проведении мониторинга в интенсивной терапии.

  • Капнография: контроль за вентиляцией
  • Обструктивные нарушения
  • Капнография: выбор параметров ИВЛ
  • Подтвеждение правильной интубации

При спокойном дыхании уровень PetСO2 у здоровых людей равен 36-45 мм рт. ст. Или, если выразить концентрацию углекислого газа в процентах (1% = 7,6 мм рт. ст.) при давлении 760 мм рт. ст., FetСO2 равен 4,7-5,9%. У женщин в третьем триместре беременности нормальная PetСO2 составляет 32-36 мм рт. ст.

Фаза I обусловлена наличием аппаратного и анатомического мертвого пространства. Видно, что уровень СO2 в начале выдоха не определяется.

В фазе II начинает поступать альвеолярный газ, и уровень СO2 в выдыхаемом воздухе резко повышается.

В фазе III, которая получила название «фаза плато» происходит медленное повышения уровня CO2 за счет поступления прогрессивно уменьшающегося объема газа из неперфузируемых альвеол, в которых низкий уровень СO2.

В самом конце выдоха уровень СO2 максимален, это и есть PetСO2. Затем начинается новый вдох, и уровень CO2 снижается до нуля.

Капнография: контроль за вентиляцией

Капнография традиционно применяется для контроля за вентиляцией во время проведения ИВЛ. Реже – при сохраненном спонтанном дыхании пациента.

Повышение PetСO2

Повышение PetСO2 > 45 мм рт. ст. указывает на гиповентиляцию, которая выявляется капнографом не сразу, а лишь через несколько минут, которые требуются для заметного подъема концентрации СO2 в тканях, крови и альвеолах. Возможные причины: угнетение дыхательного центра, слабость дыхательной мускулатуры, бронхоспазм, неадекватная искусственная вентиляция легких.

Быстрое снижение PetСO2 до нуля

Быстрое снижение PetСO2 до нуля может быть обусловлено несколькими причинами:

  • Остановкой дыхания;
  • Обтурацией, смещением эндотрахеальной или трахеостомической трубки;
  • Остановкой кровообращения;
  • Нарушением забора газов (смещение, обтурация канюли, попадание воды);
  • Неисправность аппарата ИВЛ;
  • Неисправностью капнографа.

Быстрое снижение PetСO2, но не до нулевых значений

Наиболее часто встречающиеся причины быстрого снижения PetСO2 < 36 мм рт. ст. (см. Рис.4), но не до нулевых значений – капнографическая кривая сохраняется:

  • Гипервентиляция при аппаратном дыхании, или одышка – на спонтанном;
  • Смещение эндотрахеальной трубки;
  • Тромбоэмболия легочной артерии;
  • Кровотечение;
  • Пневмоторакс;
  • Ателектаз;
  • Смещение канюли.

Обструктивные нарушения

Увеличение сопротивления во время выдоха сопровождается уменьшением скорости выделения CO2, и, часто, увеличением PetСO2. На капнограмме «фаза плато» становится наклонной.

Наиболее частые причины:

  • Бронхоспазм;
  • Частичная обструкция бронхов;
  • Перегиб или частичная обструкция эндотрахельной или трахеостомической трубки.

Капнография: выбор параметров ИВЛ

При нормальной функции легких существует небольшой градиент 3-5 мм рт. ст. между уровнем СO2 в артерии (PaCO2) и уровнем углекислого в конце выдоха (PetСO2).

Но при любом увеличении объема мертвого пространства (анатомического, аппаратного, альвеолярного), или в случае нарушения диффузии CO2 через альвеолокапиллярную мембрану (например, тяжелый ОРДС), этот градиент возрастает, причем, мало предсказуемым образом.

Практически любое поражение легких, будь то пневмония, эмфизема, астма, ХОБЛ или нарушение гемодинамики со снижением перфузии легких (например, кровотечение, сердечная недостаточность, любой вид шока и т.д.) приводят к росту мертвого пространства и снижению PetСO2.
В таких случаях только прямое определение газового состава артериальной крови позволяет достоверно судить об оптимальности ИВЛ. Обратный градиент, когда значение PetСO2 >PaCO2, возникает редко. Причины – высокая альвеолярная вентиляция, большие объемы кислорода и др.). Этот феномен значимого клинического значения он не имеет.

Контроль правильности выполнения сердечно-легочной реанимации

Много лет назад было показано, что если во время проведения сердечно-легочной реанимации (СЛР) PetСO2 оставался ниже 7-10 мм рт. ст.

, в подавляющем большинстве случаев полноценного восстановления функций ЦНС в постреанимационном периоде у пострадавшего не происходило.

В настоящее время капнография рекомендована как важный компонент контроля правильности проводимых мероприятий на разных этапах СЛР.

Предложены критерии:

1. Массаж сердца эффективен, если PetСO2 > 10 мм рт. ст.

Внутривенное введение гидрокарбоната натрия вызывает увеличение PetСO2, которое не имеет отношения к эффективности массажа сердца.

2. Если появлению синусового сердечного ритма на ЭКГ не сопутствует быстрый подъем PetСO2 > 15 мм рт. ст., необходимо продолжать массаж сердца и медикаментозную терапию до восстановления эффективных сердечных сокращений-Подъем PetСO2 в ходе СЛР выше 15 мм рт. ст. является признаком возобновления самостоятельного кровотока;

3. Резкое устойчивое повышение значений PetCO2 (обычно ≥40 мм рт. ст.) подтверждает восстановление спонтанного кровообращения;

4. Внезапное, в течение 5-10 дыхательных циклов, падение PetСO2 почти до нуля – характерный признак остановки кровообращения.

Возможные причины низкого PetСO2 во время СЛР

  • Погрешности в методике в правильности выполнения массажа сердца;
  • Гипервентиляция;
  • Интубация пищевода;
  • Смещение эндотрахеальной трубки;
  • Массивная ТЭЛА;
  • Тяжелая гиповолемия;
  • Напряженный пневмоторакс;
  • Тампонада сердца.

Капиллярность почвы, Саркома Капоши, Герпетиформная экзема капоши (Eczema herpeticatum Kaposi) или вакциниформный пустулез, Приготовление капусты брокколи, Защитные капы, Капли от насморка для детей, Как использовать глазные капли или глазную мазь, Глазные капли против аллергии, Салат из морской капусты, Польза капусты

Источник: http://medsait.ru/skoraya-pomoshch/kapnografiya

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.