Физическая характеристика электромагнитных излучений.

Электромагнитное излучение — определение, разновидности, характеристики

Физическая характеристика электромагнитных излучений.

Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.

 Характеристики электромагнитного излучения

Любую электромагнитную волну описывают с помощью трех характеристик.

1. Частота.

2. Поляризация.

3. Длина.

Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.

Это явление активно используют на практике. Например, в кино при показе 3D фильмов.

С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз.

Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.

Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.

Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.

Скорость распространения в вакууме равна 300 тыс. км за секунду.

Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:

Виды электромагнитных волн

Все электромагнитное излучение делят по частоте.

1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.

Длина радиоволн колеблется от 10 км до 1 мм, а частота от 30 кГц до 300 ГГц.

 Их источниками может быть как деятельность человека, так и различные естественные атмосферные явления.

2. Инфракрасное излучение. Длина волны лежит в пределах 1мм — 780нм, а частота может доходить до 429 ТГц. Инфракрасное излучение еще называют тепловым. Основа всей жизни на нашей планете.

3. Видимый свет. Длина 400 — 760/780нм. Соответственно частота колеблется в пределах 790-385 ТГц. Сюда относят весь спектр излучения, которое можно увидеть человеческим глазом.

4. Ультрафиолет. Длина волны меньше, чем в инфракрасного излучения.

Может доходить до 10 нм. Частота таких волн очень большая – порядка 3х1016 Гц.

5. Рентгеновские лучи. частота волны 6х1019 Гц, а длина порядка 10нм — 5пм.

6. Гамма волны. Сюда относят любое излучение, частота которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.

Сфера применения

Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.

Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.

Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.

Именно эти технологии сформировали информационный облик современного общества.

Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.

Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.

Рентгеновские снимки помогают определить повреждения внутренних тканей человека.

С помощью лазеров проводят ряд операций, требующих ювелирной точности.

Важность электромагнитного излучения в практической жизни человека сложно переоценить.

Советское видео о электромагнитном поле:

Возможное негативное влияние на человека

Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:

• усталость;

• головную боль;

• тошноту.

Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.

Интересное виде о влиянии ЭМ волн на человека:

Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.

Источник: https://pue8.ru/elektrotekhnik/653-elektromagnitnoe-izluchenie-opredelenie-raznovidnosti-kharakteristiki.html

Неионизирующие излучения. Виды и характеристика излучений

Физическая характеристика электромагнитных излучений.

Повсюду нас окружают электромагнитные поля. В зависимости от своего волнового диапазона, они по-разному могут действовать на живые организмы. Более щадящими считаются неионизирующие излучения, однако и они порой небезопасны. Что это за явления, и какое влияние они оказывают на наш организм?

Что такое неионизирующие излучения?

Энергия распространяется в виде мелких частиц и волн. Процесс её испускания и распространения и называется излучением. По характеру воздействия на предметы и живые ткани различают два основных его вида.

Первое – ионизирующее, представляет собой потоки элементарных частиц, которые образуются в результате деления атомов.

Оно включает радиоактивное, альфа-, бета-, гамма-, рентгеновское, гравитационное излучение и лучи Хокинга.

Ко второму виду излучений относятся неионизирующие излучения. По сути, это электромагнитные волны, длина которых составляет больше 1000 нм, а количество выделенной энергии меньше 10 кэВ. Оно действует в виде микроволн, в результате выделяя свет и тепло.

В отличие от первого вида, данное излучение не ионизирует молекулы и атомы вещества, на которое воздействует, то есть не разрывает связи между его молекулами. Конечно, и здесь есть свои исключения. Так, отдельные виды, например, УФ-лучи могут ионизировать вещество.

Электромагнитное излучение представляет гораздо более широкое понятие, чем неионизирующее. Высокочастотные рентгеновские и гамма-лучи также являются электромагнитными, однако они более жесткие и ионизируют вещество. Все остальные виды ЭМИ относятся к неионизирующим, их энергии не хватает для того, чтобы вмешаться в структуру материи.

Наибольшей длиной среди них обладают радиоволны, чей диапазон колеблется от сверхдлинных (более 10 км) до ультракоротких (10 м – 1 мм). Волны остальных ЭМ излучений составляют меньше 1 мм. После радиоизлучения идет инфракрасное или тепловое, длина его волн зависит от температуры нагревания.

Неионизирующими также являются видимое световое и ультрафиолетовое излучения. Первое часто называется оптическим. Своим спектром оно очень близко к инфракрасным лучам и образуется при нагревании тел. Ультрафиолетовое излучение приближено к рентгеновскому, поэтому может обладать способностью к ионизации. При длине волн от 400 до 315 нм оно распознается человеческим глазом.

Источники

Неионизирующие электромагнитные излучения могут быть как природного, так и искусственного происхождения. Одним из главных природных источников является Солнце. Оно посылает все виды излучения. Полному их проникновению на нашу планету препятствует земная атмосфера. Благодаря озоновому слою, влажности, углекислому газу действие вредоносных лучей сильно смягчается.

Для радиоволн естественным источником может служить молния, а также космические объекты. Тепловые инфракрасные лучи может испускать любое нагретое до нужной температуры тело, хотя основное излучение исходит от искусственных объектов. Так, основными его источниками являются обогреватели, горелки и обыкновенные лампочки накаливания, которые присутствуют в каждом доме.

Радиоволны передаются по любым электрическим проводникам. Поэтому искусственным источником становятся все электроприборы, а также приборы для радиосвязи, например, мобильные телефоны, спутники и т. д. Ультрафиолетовые лучи распространяют специальные люминесцентные, ртутно-кварцевые лампы, светодиоды, эксилампы.

Влияние на человека

Электромагнитное излучение характеризуется длиной волны, частотой и поляризацией. От всех этих критериев и зависит сила его воздействия. Чем волна длиннее, тем меньше энергии она переносит на объект, а значит, является менее вредной. Наиболее губительно действуют излучения в дециметрово-сантиметровом диапазоне.

Неионизирующие излучения при длительном воздействии на человека способны причинить вред здоровью, хотя в умеренных дозах они могут быть полезны. Ультрафиолетовые лучи могут вызвать ожоги кожи и глазной роговицы, вызвать различные мутации. А в медицине с их помощью синтезируют в коже витамин D3, стерилизуют оборудование, обеззараживают воду и воздух.

В медицине инфракрасное излучение используют для улучшения метаболизма и стимуляции кровообращения, дезинфекции пищевых продуктов. При излишнем нагреве это излучение способно сильно иссушить слизистую глаза, а на максимальной мощности – даже разрушить молекулу ДНК.

Радиоволны используют для мобильной и радиосвязи, навигационных систем, телевидения и других целей. Постоянное действие радиочастот, исходящих от бытовых приборов, может повысить возбудимость нервной системы, ухудшить работу мозга, негативно сказаться на сердечно-сосудистой системе и детородной функции.

Источник: http://fb.ru/article/271478/neioniziruyuschie-izlucheniya-vidyi-i-harakteristika-izlucheniy

Неионизирующие излучения

Физическая характеристика электромагнитных излучений.

Неионизирующие излучения – это электромагнитные излучения различной частоты, не вызывающие ионизацию атомов и молекул вещества (см. рис. 1).

Рисунок 1

Что собой представляет электромагнитное излучение или электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны.

Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля.

Меняющееся во времени электрическое поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимосвязаны (см. рис. 2).

Рисунок 2

Воздействие фактора на организм человека

Основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества. Электромагнитные волны также переносят энергию, тем большую, чем больше их частота. Энергия электромагнитных волн воздействует на организм человека.

Рисунок 3

Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности электромагнитных полей во всех частотных диапазонах.

При относительно низком уровне электромагнитного поля (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) принято говорить о нетепловом или информационном характере воздействия на организм.

Механизмы действия электромагнитного поля в этом случае еще мало изучены.

Классификация фактора

Неионизирующие излучения делятся на виды в зависимости от частоты излучения и того воздействия, которое они оказывают на человека.

Вследствие физических особенностей и различного влияния на организм человека электромагнитных излучений разной частоты принято раздельное нормирование диапазонов неионизирующих излучений, а также статического электрического и постоянного магнитного полей, которые, строго говоря, не считаются излучениями.

В Руководстве Р 2.2.2006-05 неионизирующие излучения разделены на 14 видов (табл. 1).

Таблица 1

Вид излучения Измеряемые частоты Измеряемая характеристика излучения Единицы измерения
Геомагнитное поле (ослабление) Напряженность магнитного поля в А/м или магнитная индукцияв мкТл или нТл
Электростатическое поле Напряженность электростатического полякВ/м
Постоянное магнитное поле Напряженность постоянного магнитного полякА/м
Электрические поля промышленной частоты (50 Гц) 50 Гц Напряженность электрического поляВ/м
Магнитные поля промышленной частоты (50 Гц) 50 Гц Напряженность периодического магнитного поляА/м
Электромагнитные поля на рабочем месте пользователя ПЭВМ I диапазон:Напряженность электрического поляВ/м
от 5 Гц до 2кГцПлотность магнитного потоканТл
II диапазон:Напряженность электрического поляА/м
от 2кГц до 400кГцПлотность магнитного потоканТл
Электромагнитные излучения радиочастотного диапазона: 0,01 – 0,03МГцОт 0,01МГц до 0,03МГц
Электромагнитные излучения радиочастотного диапазона: 0,03 – 3МГцОт 0,03 МГц до 3МГцЭнергетическая экспозиция электромагнитного поля диапазона частот З0кГц – 3 МГц. (Контроль по электрической составляющей)
Электромагнитные излучения радиочастотного диапазона: 3 – 30 МГцОт 3МГц до 30 МГц
Электромагнитные излучения радиочастотного диапазона: 30 – 300 МГцОт 30МГц до 300 МГц
Электромагнитные излучения радиочастотного диапазона: 300МГц – 300 ГГцОт 300МГц до 300 ГГц
Широкополосный электромагнитный импульс
Лазерное излучениеДиапазон от 300 ГГцЭнергетическая экспозицияДж•м2
до 750 ТГцОблученностьВт•м2
Ультрафиолетовое излучениеДиапазон от 1 х 1013 Гц до 3 х 1016 ГцИнтенсивность облученияВт/м2

Геомагнитное поле

Геомагнитное поле (ГМП) – это постоянное магнитное поле Земли.

Ослабление геомагнитного поля оказывает отрицательное влияние на здоровье человека

Средняя напряженность поля на поверхности Земли составляет около 0,5 э (Эрстед) или 40 А/м, и сильно зависит от географического положения.

Напряженность магнитного поля на магнитном экваторе около 0,34 э (Эрстед), у магнитных полюсов около 0,66 э.

В некоторых районах (в так называемых районах магнитных аномалий) напряженность резко возрастает. В районе Курской магнитной аномалии она достигает 2 э.

Ослабление ГМП в производственных условиях происходит в экранированных сооружениях (экранирование от электромагнитных полей, генерируемых размещенным в помещении оборудованием), в подземных сооружениях метрополитена, в зданиях, выполненных из железобетонных конструкций, в кабинах скоростных лифтов, в кабинах буровых установок и экскаваторов, в салонах легковых автомобилей, в самолетах, на подводных лодках, в банковских хранилищах и т.д.

Нормируемые величины

Оценка и нормирование уровня ослабления геомагнитного поля производится на основании определения его интенсивности внутри помещения, объекта, транспортного средства и в открытом пространстве на территории, прилегающей к месту его расположения, с последующим расчетом коэффициента ослабления ГМП.

Коэффициент ослабления интенсивности ГМП равен отношению интенсивности ГМП открытого пространства к его интенсивности внутри помещения.

Классы условий труда по показателю «геомагнитное поле» приведены в таблице 2. Вредные условия труда по данном показателю определяются кратностью превышения ВДУ (раз).

Таблица 2

Фактор Оптимальный класс – 1 Допустимый класс – 2Вредный класс – 3.1 Вредный класс – 3.2 Вредный класс – 3.3 Вредный класс – 3.4 Опасный класс – 4
Геомагнитное поле (ослабление) естественный фон

Источник: http://edu.trudcontrol.ru/~3d/item/vo66O2hf

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.